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GENERALIZATION OF BOUNDARY-LAYER NI03iENTUkl-I.NTEGILAL EQUATIONS TO
THREE-DIIIfENSIONAL I?LOWTSINCLUDING THOSE OF ROTATING SYSTENI ‘

By AR-IWR MLGER

SUNINIARY

The .5Tauia4Wces equations of motion and the equation of
continuity are tran$forrned so as to appiy to an otihogonal
c urrilinear coordinate system rotating u~-th.a. un@rtn angula~
wlocity about a n arbitrary anus i.n space. .4 usual simplij$ca -
tion ~f these eg~af ion~ as consistent with z’heaccepted bounday -
[ayer theory and an integration of these equations through the
hvunday layer result in boundary-layer momentum-integral
~quations jor three-dimensional jfows that are applicable to
Fither rotating or nonrotating jluid boundaries.

These equations are sim plijed and an appron”rnate solution
in closed integral jorm is obtained for a generalized buu.ndary-
laycr mome@.im-loss thickness cmd jtln.o de~ectio[l at the wall
in the turbulent case.

.1 numerical evaluation ~f this solution carried out -for data
obtu.ined in a curring nonrotating duct shouw a fair quantita.-
tire agreement with the measured ralues.

The -form in u~hich the equations are presented is readily
adaptab[e to cases ~f steady, three-dim enm”onal, incom pressible
b(>undary-layer jfww like that orer curred ducts w- yawed wings;
an,d it also may be used to describe the bmm-uiary-layer$vw orer
mzkivus rotating aurjaces, thus applying to turbotnuchinery,
propellers, and helicopter blades.

INTRO IMICTION

The development of the boundary layer on the various
parts of tm-bomachiuery (compressors and turbines), heli-
copter blades, propellers, and in w.u-~ed ducts is influenced by
centrifugal and C’orioLisforces in addition to the pressure and
viscous forces. As a result of these forces, the flow in the
t)ourdary layer not only has the characteristic ~eIocity
deficiency but also has, because of this velocity deficiency,
direction different from tl.mt of the. flow outside the boundaw
layer. Thus the behavior of the boundary layer in tkree-

)dinwnsional flow may be quite unlike the behavior in t~~o-
[Iimensional flow-. The eflect of these .additionaI forces on the
boundary layer has been realized for some time and the
observed discrepancies in the boundmy-Iayer behavior haw
(IsualI.y been explained only in a quaIit8tive manner as, for
example, in references 1 to 4.

‘1’he literature concerning the theoretical aspect of the
three-dimensional boundary-layer flow is meager. For the
kminar case most of the published work has been carried out
in connection with the yawed wing (references 5 to 7). For
the t ur+ulent case, although a number of researchers have
established the general form of the differential equations

} Supersedes N.4C.* TNT 2310. “Gsnei-sIization of Boundary-Layer Mompntum-[ntegnd
M xger, 1951.

applicable, no actuaI solutions of these equations have been
obtained. Teter-rin, for example, presents boundary-layer
momentum-integral equations in three dimensions for a fluid
of variable density and tiscosity (reference 8). Gruschwitz
establishes the momentum-integraI equations for boundary-
Iayer flow along a.n arbitrarily cuiwed streamline in reference 9. “
Burgers gives the differential equations on the dewlop-
ment of boundary layers in the case of axially symmetric
flows having a rotational component (reference 10)- Prandtl,
in addition to presenting a form of three-dimensional
momentum-integral equations, suggests the generaI procedure
that could be followed to obtain a solution (reference 11).
Experimental data are simiIarly Iacking. In spite of con-
siderable literature search, only the data of Grusehwitz
(reference 9) for a cur-red duct and the Jatz of Kuethe,
McKee, and Curry (reference 12) for a yawed wing were
found. *

As a result of research on this problem. ah the NTACA
Lewis laboratory, the boumlary-Iayer momentum-integral
equations are derived and presented herein for a set of
orthogonal curvilinear coordinates, which may or may not
be rotating about an arbitrary aYis in space and can be laid
out along a streamline of the potential How-. The so gen:
eralized equations are then transformed by use of an asmmed
velocity distribution and friction law for turbulent. boundary
layer so that, an approximate solution can be obtained for
the boundary-layer momentum thickness and the direction
of boundary-layer #low. Finally, a numerical solution is
carried out for the Grusehwit.z data in order to make a
comparison between the estimated and actual measured
vaIues.

The equations as gken in their generalized form are
readily adaptable to cases of steady, three-dimensional,
incompressible boundary-layer flow involving centrifugal
ancl Coriolis forces- The approximate solution, however,
has been carried out. only for the turbulent boundary Iayer,
because in most of the aeroc{j-namic configurations, where
these equations apply, transition from kminar to turbulent
flow occurs comparatively early in the flow process. A
laminar form of the approximate solution can be obtained
by simple substitution of a sui;able velocity profile and
friction Iaw.

It should be noted that whereas the dif?f’erential equations
cIescribe the flow- phenomena with only the accepted simpli-
fications, the approximate solution depends to some extent
on the assumed bounclary-layer -relocity profiIes and the
relation for friction. Both of these assumptions were made
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on the basis of the data of Chwschwitz (reference 9) only,
because the data of reference 12 were not adaptable to
extensive computations for the. purpose of this analysis.
The measurements of Gruschwitz, on t.h~ other htind, have
certain shortcomings as they were obtained in a nonrotating
<Ihanne] formed by two circular-arc shaped waHs. Thus the
generality of the velocity profiles measured by Gruschwitz
is in question. A revision of the approxima t~ solution can
therefore be expected when more data k’OI1le a~aiItibIe. In
addition, any speculation on the occurrence of boundary-
Iayer separation (which by definition is a special form of a
velocity profile) would be absolutely rmmningless; no further
menfion will therefore be made of this phase of the problem.

SYMBOLS

The foIIowing symbols are used in this report (the
dimensions are given in right-hand coIurml):
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transformation coefficients (o)
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parameter determining nature of (0)

boundary-layer equations
mass
static pressure (m/-’f-’)

. . components of stress per unit (ml-it-2)
area in Cartesian coordiuatc
sys tern

resultant velocity vwtor
perpendicular distance of partick

from axis of rot at ion
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Reynolds number based on 0=,—
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radius of circle
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total path length dx

o
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time
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system
function used in transformation
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sultant skin-friction stress to
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angle between .X-axis a]~d tangent
to x-axis
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measure of boundary -Iayer deflec-
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Subscripts:
i
x
q

i, H

variabIe of function $,

(’-JL”X)

kinematic viscosity

(1)

(1%-’)
components of vorticity vector (t-’)

density (ml-’)
apparent, stresses existing in tur- (ml-%-~

bulent flow
shear stress at wall (ml-’t-’)
arbitrary function satisfy~~

equation (39) and boundary
conditiom

([.1
,5H;9)+,]J- (5:+97)

an=gdar v810city (t-’)
components of vector M in C’ar- (t-’)

tesian coordinate system
components of vector m in curvi- (t-’)

Iinear coordinate system

initial value
x-direction
z-direction
order of approximations

For Gruschwitz data-point designations and streamline
designations, see figure 2.

I
I

\
z

X=$= cm ~ dx + z sin #
Y=y, Z=zi + z Cms P

Zi =constmt-~ sin # dz

Cw
c=dx P’P(=)

Fmr;EE 1.—Transformat ion from Cartesian cc-wdinates X, Y, Z to orthogonal curvikesr
mordinates .7,V, Z.

DERIVATION OF BOUNDARY-LAYERMONIJ3NTLJF1-INTEGRAL
EQUATIONS

The equations for steady flow of a fluid having constant
density are derived in a Cartesian coordinate system X, Y,Z

272+S3—5L—-14

T
(a)

s?kam
“A
“B
“c
“D

(b)

(a) Channel and meawriag plate seen from beIow.
(b) Meassring plate seen from below’, showing point end stream~ine desigmatims. Shaded

sectiom~indicate regions of potentid-fiow breakdown.

rotating with uniform angular velocity about an arbitrary
axis in space. These equations are then transformed to an
orthogonal cui+linear coordinate system x,y, z such that
the x-ask can he placed along any convenient. path in the
XZ-plane, -which is considered as a p~ane of a wall. These
equations are then simplified in a manner consistent w-ith
the boundary-layer theory. If the path is chosen so as to
match a. streamline of the potentiaI flow, only one velocity
will exist outside the boundary layer, that. along the stream-
line. Furthermore, the changes in boundary-layer quantities
in a direction other than that along the streamline are ex-
pected to be relatively smalI in comparison with the changes
along the streamline. Additional simplifications may thus
be possible. Finally, integration through the boundary
layer gives the generalized form of momentum-integral
equations for three-dimensional flows that. may or may not
involve rotation of the system.

Equations for steady fiow of fluid with constant density
in rotating Cartesian oeordinate system.—The ‘ATavier-
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Stokes equations of flow for a fixetl Cartesian coordinate.
system X, I“,Z (reference 13, p. .576) are

and the equation of continuity is

(la)

(lb)

(lC)

(2)

It is now assumed that, this Cartesian coorcIinate system is
rotating with a uniform angular velocity w and that the
observations of the motion of the fluid particles are still
made from a position rigidly at tachwl to the same system.
The velocity ~, and a~celeration ii. are as seen by the ob-
server, that, is, they are relative to the X,l”,Z system,
Because of the. rotation, however, the X, J’,Z system is not
an inertial system (reference 14, p. 53) and thus the second
law of motion holds only with respect to acceleration H
relative to some other system tkat is nonrotating,

mii=F

In terms of 6,0 then (reference 14, p. 104),

Here rw X (OJX ~) represents the centrifugal force and
2mwX~O is the Coriolis force.

Thus for a Cartesian coordinate system rotating with a
D L’O D V.

uniform angu]ar vekwity co, the expressions for — —
Dt’Dt ’

and ~ mush be modified by proper cornponent,s of tbe

Coriolis and centrifugal accelerations. For steady flow, the
component accelerations as referred to a rotating Cartesian
.coorciinat e system are therefore

(34

(3C)

The equation of continuity, which cloes not involve any
wceIerations, remains the. same.

COMMITTEE FOR AERON.4UT1CS

Transformation to orthogonal curvilinear coordinate sYs-
tem.—Transformations similar to those of Gruscb}vitz
(reference 9) are used as indicatwf in figure I \viLh the pre-
caution that, the syskm remain right-handed.

J
x= ‘ cos/3d.z+2 sin~

o

Y=y

2=2,+2? Cos /3 I
where

J

x
ZI = constant- sin p dr

o
and

@=P(T)

I_Tseof these transformations permits an arbitrary curva-
ture of the x-axis in only one plane, the XZ-plane, Thus
the solution is somewhaL reskricttid. In t.}vo-dimensiomd
boundary-layer in~estigationsj ho>vever, it. is found that thg
boundary-layer equations are ,maffected if the radius of
curvature in the Xl”-plane is large m comparecl with th[~
boundary-Iayer thickness (reference 15, p, 120). In t.hrec-
dimensional boundary layer the same limitation will
probtibly apply providing, of course, the vaIues of U=, ~Y,
and W, are properly adjusted to take care of this additiol]a~
curvature. Sett,ing

d/3
c== (curvature of J-axis)

gives

g=(l+cz) Cos /3 ~=o

aY
ax

=0

~=–(l+cz) sin b ~=0

The elements of length at (x, y, z) in
increasing coordinates are (reference 15,

(4) I

the direction of tilt:
p. 101):

Thus,
h,dz, htdy, hsdz

(cLs)’= (h,) ’(dz)’+ (A,) ’(dy)’+ (h,) z((?z)’= (dX]’+ (dY)2+ (dZ)’

But because

and so forth,

(ds)’= (1+cz)2 (dx)’+ (dy)’+(dz)’
and

h,=(l+cz) h’=1 h,=l -- , (5)

,
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linear acceleration can be writteu
direet.l~~, is given in reference 13 (p. 158). (It shodd be
noted that the h values herein are reciprocals of those in
reference 13.) The components of a gradient now are

>

lb——
h, ax

Ivht’rt’as th<’ Components

Ir@,–li’ti,

Thus the accelerations
lvritten as

..7- “[: bh, ~.~, +

(
1;;-–: g+~ g+~ ;:+& W . a.r )

(
h~;, ‘u g– W%.—

)
+2(U,H”-WW$ W’11g

1

D1’ D’d-
Ancl the expressions for ~ and ~ follow from symmetry.

The equation for the divergence now has the form

1
div ~e= —

[ 1A‘(h,h,c~+:j(h,h,l’)+b; (I IJL,H’) =0
h,h JL3 3X

whereas the components of the curI ~0 are

–[
A @J12-g (~z~~

‘=h;h3 dy 1

q=&[: M& (W’)]

r=&- [&T7-&hL9
1

In oriler to obtain the viscous ‘terms the preceding expres-
sions me used in the expansion of

v [grad (div 7jJ—curl (curI ?.)1

If equations (5) are substituted into these general expres-
sions and the. di.flerentiat ions are carried out: the equations
for flow in an orthogonal curvilinear coordinate system rotat-
ing ~vit}lan anWlar velocity w are obtained. The body forces

are negIecte.d here.

*C ~+i’$+ FI’~+&PW-&W2R~+

1
[

I apLp I a~~T
2(@*u’-d’)=-- I+cz; m ‘ (1 +Cz)z bzz —

-7 dv dc aw, aw au ~T#
— — —.—

(I+c2)3 ax d2+ a~*-’ a22+Ijc2 a~
——

(l+ CZ)’+

~: au
1--—~+ 2C —0+c2)3 dZ (I +c2)’ ax

(6a)
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(6b)

(6c)

W

[n the general ortlmgoual coordinates, the expressions for
the rate-of-strain components arc

The viscous terms in equations (6a), (6b), and (6c) may be
expressed using the rate-of-strain components as

(7a)

[

1 NV “—— =4$+g+&a;Jv (1+CZ)2 bx2 (1+’C2)3 ax dz

(7b)

,
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Equations (6) are directly fi~iplicable to the lwninar flow.
For turbulent, flow, because of the velocity fluctuations it is
necessary to modify the s~resses h~- addition of the so-called
Reynolds’ stresses. Thus, making use of the parallel form
in equations (7) ~ the NTavier-Stokes equations of mot iou for
turbulenb flow may be written in terms of thr apparent,
stresses as

1 :C2 g+~”::+ ~~”:% ~&
/g ]~’–

:

1

[, &%+%’+%+-]— (88)

(8c)

Simplification for flow within boundary layer, —Equa-
tions (6) and (8) are equivalent, to the complete Navier-
Stokes equations. Within the boundary layer, however,
certain terms whose contribution is reIat.ively unimportant,
can be neglected. If the y-axis is tditm as Dormal to the
wall, the boundary-layer flow then takes place over tho z,z-
planc (or & .XZ-plane). All terms are now made dimen-
sionless by referring the le.ngtlls to some body length, the
velocities to their free-stream values, and so forth, as ex-
plained in reference 16 (p. 45), ancl all quantities of the order
of magnitude of ~ or smaller are neglected, Furthermore,
b(cause the boundary -laym flow along a definite path
~=0 is of intcrest,j additional simplifications are possible.
Setting z= O re,stiicts the equations, because the genera]
boundary conditions (not on the z-axis) carmot bc satisfied.
lt will subsequently be seen, however, that these general
boundary conditions are unnecessary in the solution of the
final equations. ‘1’hose simplifications yield the Navier-
Stokes equations for fIow within the boundary layer in a

rotating orthogonal curvilinear coordinate sysLcm evaluated
at 2=0,

(9b)

(9C)

for the laminar case. For the Lurbulent boundary layer, a
corresponding set of equations is obtained with the substit u-
~ion of ~ dr

()
~ dT,vfor ~ b2W

()
~$forv ~, and-– ———.p &y ay’

Equ~tiol~ (9b} sl~&&, as pointed out in reference 10, t}ltit
because aI1 the terms on the ]ef t-hand side of the cqua tions
arc of the order of magnitude. of one, }vithin W boundary
layer, P can vary at most by au amount of tIl~’ order of &
lt is reasonable then to ncglcci this variation and consider
P soleIy a function of the fIow outside the boundary Iaycr.
Thus, if z is chosen to coincide with a streamline of the flow
outside the boundary layer, ~’= ~T’=’0, and by integration
of equation (9a) with the effect of viscosity neglected the
foIIowing reIat ion is ol)taill(’(1:

P=collsm-; p W+; plxpfi’ (10)

which is a form of tile equation of Bernoulli.
Furthermore, because outside the Loun(lary laym the flow

with respect to some nonrotating seL of coordinates is irrotti-
tional with reference to the rotating coordin atc’.s the c.o~tb
ponents of the vortirity vector become

{=–2UJ

This assumption of irrot at ionaIity is Hot always Lruc and in
some applications, such as the hitcr stages of an axial com-
pressor, it cannot be used. As long m vorticity is distributed
according to some definite pa tternj ho~vever, a relation be-
tween the components of vorticity and the components of
rotational ~elocihy may be found and subst,itut cd for cquti-
tions (11).

Substituting again in the expression for the componen M
of vorticit<y gives

And for z= O, H’= O, which is along tile streamline, the
expression for curvature becomes

(12)
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The equation of continuity remains

(13)

Generalized boundary-layer momentum-integral equa-
tions.—In order to obtain the boundary-layer momentum-
integral equations, equations (9a) and (9c) are integrated
with respect to y through the boundary layer to some con-
stant height d such that.

and
ad

s
ad

ZL Ii
‘w d y + -–

IZ)ZLO ““~y+cldE2dy-cld’u’d~

(14))

These equations apply equally well for the laminm or tur-
bulent boundary layer, with the value of ro representing the
shear stress at the wall accordingly adjusted. By suitable
use of equations (12) and (13), these equations may be
transformed to

(15b)

The following definitions are now introduced: The mo-
nwnhum thirliness in the z-direction of the flow in the r-
redirection,

1
f“=T’. o

‘(h)udy (16)

The displacement thickness in the redirection,

(17)

The momentum thickness in the z-direction of the flow in
the z-direction,

The displacement thickness in the zdirection,

.
(18)

(19)

The momentum thiclcness in the z-direction of the flow in
the r-direction,

J
Oz=-& ~d(U-u)wdy ~20)

.

The momentum thickness in the z-direction of the flow in
the z-direction,

s

d
ez=~/y o IJUdy (21)

Ml these thicknesses, as in two-dimensional boundary-
Iayer theory, have a dimension of length. Furthermore,

With hhe use of definitions (16) to (21) and equation (22),
equations (15a) and (15c) reduce, for 2=0, to

ancl

(23b)

Reduction of equations to forms obtained by other
investigators, —If only tw-odirnensional flow exists, that
is, if c=O, w=O, and w=O, then equation (23b) vanishes and
equation (23a) becomes an ordinary IGhmln momentum-
integral equation

If w=0, that is, if the system is nonrotating, equations
(23a) aDd (23b) become identical with the equations of
Gruschwitz (reference 9).

Setting c=O in equations (9a) and (9c) makes these equa-
tions identical with the equations of Burgers (reference 10),
who carried out his deri-ration for a Cartesian coordinate
system.

Finally, if the syskm of coordinates is chosen so as to
i

maintain the right-hand rule and c k set equaI to :7 thus

dz
establishing the z-axis as a circle, then ~r = 1 and because

of axial symmetry all derivatives with respect to z vanish.
The coordinates are now assumed to be in a fluid that is
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motionless at great distance from the surface of tl}e rotating
immersed disk. Thus,

[ntegmtion of equations (98) and (9e) gives, after some
manipu]~t ion,

2T;,(,2Jd,1q){,y)=-y2Tr,

and

k(’ld~’’’’’~’-’”=’?”= -?’

which tire identical witI~ cquat ions of Kfirm&II for the
rot sting disk (reference 17).

APPROXIMATE SOLUTION OF MOMEN’NJM-lNTEGRAL
EQUATIONS FOR TURBULENT BOUNDARYLAYER

Transformation and reduction of dependent variables. —
In order to obtain a solution of the lnolllc’llt{llrl-ilitegr:ll
equations, additiona~ relations arc needed describing tilt’
velocity profiles existing in the bounflary layer and t]le
friction at the wall.

With the use of a suggestion by Prandtl (reference 11j,
the expressions for u and w tll~t will be USW1are

()7[ = U(2 f

“l’=’’’G(f)g(f)ugug
(24)

with hOUlldtlry conditions

for y= a,

for y=O,

and ivith e clefincwfm

on 0 and g

C= tan a (25)

where a is the angle betkveen tJ)c direction of [he resulttint
skin-friction stress and the direction of the-flow outside the
boundary layer. Because of this definition of c, g= 1 at
y=o bemuse

bw

or

limdJ=E __
fJ_,(Jb’li

dy

TO,Z= CTO.Z (26)

hIfitht’mtiticalIy, such use of c implies a linear variation of
w lvith e a t)d makes possihlc the dissocia,tiou of the w velocity
profile from its scale and direction. Because the flow must
change direct ion in the houndar.v Iayer from that at the }vall
80 [hat. iu the free stream, there is no reason to assume that
such M dissociation is actually possible. In othm words,
there is no reason to Mieve that g should be a function of
(y/~) alone and I1OLof caswell. In accordance with refereuce I I,
however, this approximation is certainly admissible for
small values of c and gives resu Its of qualitative accumcy

for moderattily large e. In addition, in order to rhcck this

msumpt ion, the value of ~&, for several experimental

velocity profiles and valum of e rangillg from 0.2 IC to
0.670, as obtaine(l from reference 9, is plottc(l against y/3 in
figure 3. Th.c results of this plot, in(licnte in(lm{l tlult Gg is
independent of e.

8a

“’.60

40

.20

2
& fQ
-!Q.08

.06

.04

.02

.0/ .02 .L?4 .08.08 JO ,20 .40 .60 .80MO
Y/d

FI{;[rK~3,—PM(If~~, against ~ [or various data from reference 9.

In parallel to tile two-dimensiond boundary-layer theory,
the following definitiol~s are made:

f

d ‘,

(1–qdy
> 0

J

d =H
[l– G)Gdy

o

sd
(.1- G)Ggdy

o

J

=J
‘(l– G)Gdy

11

[

d

GgdlJ

—, (1

rd GE
(1–G)Gdy

.(J

J
‘G’g’dy

o— ~

J

d L
(l– G)Gdy

o

{28)
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‘1’lle quantities H, J, K, and L are functions of G and g.
Bt’[:ause G and g are representative of the velocity protiIes in
the boundary layer, the changes in these velocity profdes
must be refiected in turn in the values of H, J, A7, and L.
In other words, the external forces acting” on the boundary
layer aml influencing the changes in the shape of the velocity
profiles also cause a -mriation in }1, J, K, and L. trnfortu-

/.0

.8

b
:.6
c
a
Q ,4

2

0 ./ .2 .3 .4 .5 .8 .7 .8 .9 I.(7
7J/o-

LSI Experiment.sl relucit y profile from refwence 9(Pobt15, III). Dstz obtaimd in carved
duct; ~= 40 mlfimeters.

(b} ExpwimentaI relocity pmrlfe of reference 12eonrerted to z, y, z coordinate system. Data
obtained in brxmdary layer of yawed wing.

F~(,IIBK4,—Comparison of awumed G and Gg with e~rimental ‘relocity profiles. .ksamed
protlles: G=(y/a) W G~= (#/@W (1-y/3)~.

/.0
o Lkfa of refe~errp E?, pos[tion i-u,

mnverted to z. u.z svs te m -

---tt-F%-m ,I 01 I u Data of referen&”i2, pbtiofl L-c, I
+conver?ed fo z, V, z sysfem I j

G-A!’ I k I I I ,. ’-.. - I I

ll\[Ill!u_l!!!Hl!

---
-s
z t-t Iltllwmlt

- l-k~
I

.2 — - ..i i
II ili-

}
--d=dIt““t
L

.il
II 1111 711 -7-&l

o .1 .2 .3 .4 .5 .6 .7 .8 .9 [.0

FL(;LR E 5. —C0mparfswn of essumed mrrect ion function g(g(~) with data of refererme 12 con-

verted to r, K, z coordinate system. Aswmpt ion: E(YI$) = (l-y[&)*.

nately, the avaikble data of reference 9 do not involve _
Iarge changes in the shape of the velocity profiles and the
quantities H, J, K, and L. This behavior of the velocity
profiles is -rerilied in figure 3. The data of reference 12 do _ _
indicate large changes in the shape of the veIocity profile;
however, the data me not presented with sufficient detail to
permit an accurate evaluation of H, J, lY, and L. Thus,
until more edensive experimental data become availabIe,
the quantities H, J, K, and L are assumed to be constants
that can be evaluated either b~- assuming a suitable form for- ---
G and g or b]- computing directl~- from Gruschwitz data.

In accordance with reference 9, good assurnpt io[}s for G

(29)

.ti indication of the degree of fit afforded by these expres-
sions can be obtained from figure 4 (a), where a calculated _.
profile with n =’7 is compared with one of the profiles of
Grusch\\itz. Other profiles of Gruschwitz data gi-re similar
restits. It should be noted that this good agreement shouId
not be interpreted as meaning that assumptions (29) mill
ahrays give a good representation of the velocity profiles in
the three-dimensional huh-dent. boundary layer. Figure 4(b)
shows a compari~on simiIar to that, of figure 4(a) with pro- ‘
files converted to the .r,y,z system using data from reference
12. Equations (29) CIOnot. afford a good fit in figure 4@),
aIthough the equations do represent the general behal-ior
of the velocities. This comparison is further illustrated in
fieme 5, where the value of g (yjd) as obtained by converting
the pro fiIes of reference 12 to the r,y,z system at indicated
points is compared with (1 –-y/6)’.

With the use of relations (29), H, J, h’, and L are com-
puted as

~+n .
H=—

‘n

nllln+7)
‘=@n+l)(3n+l)(3n+2)

2r22(2+n)
‘=(2n+l)(3n+l)

~

~=(3n+2)(2;$ l)(5n +2)4

which for n =7 give

H=l.28.57

J= O.5423

h’=z.e~z~

-L=l.1285 1

(30)

(30a)
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.!veraging the vaIues along line III of Gruschwitz data
(fig. 2) results in

H=l.37

J= 0.550

h’=2.43

~=0.9i38

(30b)

This relatively good agreement between the t~vo sets of
values is also indicative of the over-all fit, of the assumed
expressions for G and g to the data of reference 9,

The additional relation that is uceded for the solution of
the momentum-integral equation is the expression for surface
friction. In reference 9, Gruschwitz demonstrates that,
Khrmfm’s friction Iaw

(31)

appears to be valid in the three-dimensional boundary layer
as well. Substituting relations (26), .(28), and (31) in
equations (23) yields

and

(32b)

Because of the form of the relation for fr;ction, an advan-
tageous transformation of variable is

in order to eliminate the Reynolds nun}ber from the equa-
tions.

With the use of equations (33) and (12), two nonlinear
partial differential equations for e and c applying along z= O
are obtained from equations (32),

and

[
:(K–J)e;~ ( )– ;L&l– L? C8–

(? ’’-H) %”+”o’’S’’l=”
(34b)

As sho]vn in the appendk, these eq uat ions can be eithw
hyperbolic, pmabolic~ ~r elliptic, dc~je;lding on the shape of
the velocity profiles existing in the boundary layer. For
u= i7(j/8)1fx and g= (1—y/3)2, the equations are ahvays
elliptic.

Simplification of equations and approximate solution.—
The relative importance of the various derivatives in equa-
tions (34) is now determined. First, (3 and e are assumed to
be quantities that are smaller than one, which can ‘be WcoTn-
plishcd simply by referring all lengths to a to [al path Iel]gtlk
8 and a to 45°. As a resuIt of this assumption, all deriva-
tives in 6 and c become of the order of magnitude of G or c.
Equation (34a) is then divided by 4/5, so that the coeffk:ient
of bQj&c is .1 and the coefficients of bo/bz and tkpz arc Je

and ~ JE), tl~atis, of the order of magnitude of c and (3,

respectively. In a similar way equation (34b) is divided by
(K–J)9 so thatthe cocflkients of bQ/& and &/bx become

# ~/e and 1 (order of magnitude of one), respectively, and

magnitude of e), respectively. Then, if e is sma]l as com-
pared with tan 45° and o is small when compared with S, all
terms of the order of magnitude of ea, (3c, and 02 may be
neglected} }vhicll gives

These two expressions show thai the primary changes in
El and e in equations (34a) and (34b) occur only in the
x-direction and thus the description of the p]lenomena only
at z=O is justified.

A solution of equations (35) can now be obtained by SUC.
cessive approximations because V, coy,and c are assumed to
be known functions of x. First, equation (35a.) is solved,

The values of Q1(z) are then used in an approximate solution
of equation (35b)

where

(38)
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With Cr(x) k!mmm, the appro.timation for e coulcI in turn
lJfi improved by agsin solving equation (35a). If a grows
large along the path, ho}veverj it is more ad~antageous to
{consider the following equation:

(39)

It. is thus hoped that neglectionof &Pz mill not affect theac-
curac.y of the solution to a very marked exten~. The solution
of equation (39), which may be obtained by the method of
Lagrange, is

where

(41)

(42)
and

is an arbibrary func~ion satisfying the boundary condition;
when Z=.rf and 2=0, then &=ei. Setting

at x=xi gives A=O. In addiiion, for z=O, Ais of the order of
magnitude of e.

Expansion of ~ in Xfaclaurin’s series about A(rJ yields

+N=wo)+w(o)+ y’(o)+ . . .

Because there is only one boundary condition, it is possible
to determine only one of the constants in this expansion;
consequently, $ cannot be uniquely established. The fact
thai k is of the order of magnitude of e, hoiterer, suggests
that. the assumptions made for #’(0), &“(0), and so forth,
are successively less important. Thus these derivatives may
arbitrarily be expressed by a single constan~,

where .4 from purely dimensional considerate ions must have
the dimensions of 1-1. From expressions (41) and (42), it is
suspected that

.4=B C 18 W!

( )44cii
(44)

where B must, be obtained from the experimental measure-
ments.

IL should be noted that because *(A) cannot be uniquely
determined other func~ions of Asatisfying the single boundary
condition could be used as -weII. The function eAi is chosen
only bec~use it is convenient to use and parallels the wpres-
sions (41) and (42). This arbitrariness of the functional form
of # and the vaIue of .4. is due to the consequences of assuming
z=O, and thus it is probably not advisable to carry any
further approximation for emand so forth.

In solving equations (36) to (44), either set of values for
H, J, A“, and L may be used. Because the averaged ~alues
(30b) are probably more representative, having been obtained
by evacuating experimental data at. a number of different
positions, it is ad~antageous to use these -dues in com-
putations.

COMPARISON WITH E~PER1lIENT

In order to check the validity of the approximate solution,
the boundary layer along four streamlines of reference 9 was
computed and compared with the measured -m.lues. The
designation of the streamlines and data points is illustrated+
in figure 2. Because the data were taken along curves I to
V of i3gure 2, the computation do~~ a streamline requires
&t an interpolation among the various data points. iis a
result. of this interpolation, the computations could not be
carried through the full length of each streandine. Values
(30b) -were used for quant ities 11, J, k’, and L. The constan t
B was obtained by fitting aIong streamline B the solutio~
for &, so that at x= S’, Ell,-e measured. In this manner,
the value of B was found to be 38.5. This value was then
used in computations of streamlines A, C, and D. It is
noted that B= 38.5*7 (l?#4) i, although justification for such
a dependence cannot be made. In all integrations Simpson’s
rule -was used.

The results of the computations are plotted in a nondi-
mensional form and compared -with the interpolated measured
values in figures 6 and 7. .4 study of these figures reveals
a fair quantitative agreement between the measured and
estimated dues of (3 and a. As the values of e+tan 45”
(fig. 7) the fist approximation for f3 in figure 6 becomes
progressively viorse, which is remedied by the second approx-
imation. The pooresi agreement is obtained along streanl-
lines A and D, which because they are rIosest to the walls
might be affeeted by the flow in the corners of the duct.
Streamline D especially may be affected inasmuch as
Gruschwitz mentions the existence of separation on the
convex wail.

The fair quantitative agreement with the measured values
is not to be interpreted as a conclusive @eck of the -raIidity
of the procedure and the assumed values in all cases of three-
dimensionaI boundary-Iayer flow. The suggested procedure
simply represents the best that can be done in view of the __
meagerness of the available data. Because the Grusclnvitz
data do not involve the effects of uniform angular -relocitv

and because the variations in ~ ~ and ~ ~ are small,
1~ bz u az
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Fm LTRE6.—Comparison of calculated and measured generalized momentum thkkness. Experimental data from reference 9.
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it (wulfl be rnainttiined that this check of the procedure his
t)t,~~ntarried out on a somewhat special case. For that
reason, it is desirabIe that xdtlitional experiments be carried
(J(lt. in setups that eIiminate the present short tiomings. A
larger vakation of Reynolds number shouId aIso be used.
\Yith ad(litionaI experiments, a modification of the vaIues
of H, J, 1<, L, and l?, to~etl~er p~rbaps with some re6nements

of tile procedure, till be in order. It. might be w-elIto remem-
t)~~r,at such time, that became of the necessary empiricism
inrolvtxl (which results from the very I_imited knowledge of
turbulent phenomena.~, long and tedious computations vrould
rady be worthwhile.

CONCLUSIONS

The folIow-ing conclusions can be dra~m from an analysis
of the three-dimensional momentum-integral equations and
ti comparison of the numerical res{dts with the Gruschwitz
(Iata for turbulent boumlar.y layer:

1. lllthin the Imundarl- layer the static pressure can wry

at. most by an amount of the order of magnitude of the
boundary-layer thickness 8.

2. It is possibIe to generalize the velocities in the boundary
Ia~-er by use of two characteristic quantities 6 and e Where
e is the tangent of the angle enclosed by the direction of the
resu Itant.skin-friction stress and the direction of the flow”
outside the boundary Iayer.

3. Tmen the” gen<’ralized boundarj--layer momentum-loss
thickness 0 is smaIl as compard with the total path length
and 6 is small as compared with tan 4t50, the primary changes

fir;u~E T.—C0mkWn of caknkt@i and mmsurti b@md@.y~yer ,deflecrionat w~. Experim*ntzd dat% from refercrm?9.
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in f3 and e occur along the streamline of the flow outside the
boundary layer.

4. The three-dimensional boundary-layer mornentum-
integml equations can ‘m either hyperbolic, parabolic, or
elIiptic, depending on the relative magni~ude of the. parameter
MAT, which in turn depends on the shape of the veIocity
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(c) Streamline C; S=37.8inchw.

profiles existing in the Loundary la~-er. The power-law
profile when used with the correction function g= ( I —y/5)2
ahvays resuIts in eHipt.ic equations.

5. TIE approximate solution of the three-dimensional
momentum-integral equations shows a fair qu’an~itat ivc
agreement \vitb thti values measured by Gruschlvitz.

6. AdditicmaI e.xperimentaI data are nmcssary to establish
more geme~ally applicable values for form parnrneters H,
~, K, and L and B, the constant, used in the second approxi-
mation for e.

LEWIS FLIGHT l? REPULSION I,ABORATORY

&TATION.4L ~DVISORY COlf If ITTEE FoR i4ER0N.4uTICS

CLEVELAND, OHIQ, Nownlwr 1, 1950

(d) Streamline D; S=21,23 iflches.

FIGURE 7, CcmcIuded.-ComParison of calculated and measnred boundarylayer deflection at waII. Exuerimentd data from reference 9.



APPENDIX

ADD1TIONAL REMARKS ON THREE-D1MENS1ONAL
BOUNDARY-LAYER}1OMENTUM-1NTEGR.%LEQUATIONS

In order to obtain the approximate solution of equation (34),
it was shown by comparing the relative order of mag-
nitude of the coefficients that some of the terms may be
neglected. Care must be taken with such simplifications
inasmuch as various implications of Lhe equa~ions in question
may be obscured by this procedure. For this reason, aside

from the approximate solution, the character of equations (34)
was also investigated in detail.

By use of the procedure outlined in reference 18 (p. 38),
along z= O the system of equations (34) is found to be
hyperbolic when Mil~l, elliptic when MV< 1, and para-
bolic when MI’= 1, where

(45)

Because J, .& and L are functions of G and g, the character
of equation (34) depends on the shape of the -relocity profiles
in the boundary layer.

It should be noted that. when MV=O, then ~=0, which is
only possible if G=O or g=O, and in turn u=O or w=O. If
the trivial case u= O is neglected, it is established that when
w=O, ,=0 as vd. But for c=O and w=O, equati~ns (34)
reduce to a special case

ww%9=001255 ‘“a)
and

2u, I+H ~=_o-o&55._—[, g (46b)

Here equation (46a) is an ordinary twodimensional boundary-
layer momentum-integral equation for e and equation (46b)
is a relation that evidently must exist among LT,21~T/bz,
tiv, and 0, when E=O and w=O.

W%en the equations are elliptic, no real characteristic
diiection can be found. When only one characteristic direc-
tion exists, the. equations are parabolic and in the h~’perbolic
case two characteristic directions through each point of the
.rz-plane are obtained. For the parabolic case then,

and for the hyperbolic case,
>

+=f+=e L+ \~L’–J(K–cJ)L
(K– J)

dz L–<L’–J(K– J)L~= f.=e
(K–J)

and the characteristic lines are asymmetric with respect to
the x-axis. In order to determine whether elIiptic, parabolic,
or hyperbolic equations apply, the magnitude of .JliiT is com-
puted: Substituting from expressions (30), 31i\T is obtained
in terms of n:

~11~=’(3n+l)(3n+2) 108n+96
(5n+2)(ll~+7)=i- &-55( 55n’+57n+14j” - “

This equation shows Ml to be a monotonically increasing
function of n. For n.=0,

Am=;

and
ii ~n ~$i~,=~

.
n-i- 55

These results indicate that a so-caIIed power-law profile when
used with g= (1-g/@2 always results in equations thai
although elhptic are very near to being &raboIic. W.ng
values (30b) ~

WV=O.936 —

which again indicates an elIip tic character of the equations.
It should be remembered, however, that the assumptions for
G and g were made on the basis of only one set of data; con-
sequentIy there is no assurance that the veIocity distributions ‘
existing in the boundary layer will always give the same
values of Mb’. h fact, it. is generally more likely that they

will not give the same values of M.}T. Some indication of the ..
variation of MIN may aIready be obtained from figure 8,

Fm CEE .%—l’e.lues of parametw~.l{fi- for data of referenm 9.
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w-here its value \vas plotted for each Gruschwit.z clzta point.
.It points 5, 6, and 7, hoivever, smalI VEIILWSof w may have
prevented an ticcurate determination of ~ anti as a ~on-
sequence JlflV* O there. The value of .Ifil’ in figure 8
varies within the limits 0.65<MW< 1.2, with the bulk of th[’
points indicating that M4?~s 0.95.

On the basis of the preceding c~iscussion, there is sonle
evidence of the ~’qua~ions being pambolic, elliptic, and hyper-
l)olic in the turbulent boundary layer. It is interesting to
note? that generally (as in supersonic and subsonic flo~v, for
instance) these hyperbolic and elliptic regions have their
(Lounterptirt in physical phenomena. Thus some essential
differences might. exist in the p}~cess of moment urn transfer
lwt}vcen the hyp~’rbolic ancl elhptic regions.. These cliffer-
enres cannot now be ascertained bemuse first equations sin~-
iIar to (34) with z# O }vould have to be obtained, and there
is no mention of any irregularities in the bt’llavior of the flow
in reference 9. Wlcn additional experiments are macle,
however, it would seem advisable to stiudy closely these tlvu
mathematical regions in order to obtain some indication of
the physical make-up of their differences’.. ._
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